On the Provably Tight Approximation of Optimal Meshing for Non-convex Regions
نویسندگان
چکیده
Automatic generation of smooth, non-overlapping meshes on arbitrary regions is the well-known problem. Considered as optimization task the problem may be reduced to finding a minimizer of the weighted combination of so-called length, area, and orthogonality functionals. Unfortunately, it has been shown that on the one hand, certain weights of the individual functionals do not admit the unique optimizer on certain geometric domains. On the other hand, some combinations of these functionals lead to the lack of ellipticity of corresponding Euler-Lagrange equations, and finding the optimal grid becomes computationally too expensive for practical applications. Choosing the right functional for the particular geometric domain of interest may improve the grid generation very much, but choosing the functional parameters is usually done in the trial and error way and depends very much on the geometric domain. This makes the automatic and robust grid generation impossible. Thus, in the present paper we consider the way to compute certain approximations of minimizer of grid functionals independently on the particular domain. Namely, we are looking for the approximation of the minimizer of the individual grid functionals in the local sense. This means the functional has to be satisfied on the possible largest parts of the domain. In particular, we shall show that the so called method of envelopes, otherwise called the method of rolling circle, that has been proposed in our previous paper, guarantees the optimality with respect to the area and orthogonality functionals in this local sense. In the global sense, the grids computed with the aid of envelopes, can be considered as approximations of the optimal solution. We will give the comparison of the method of envelopes with well established Winslow generator by presenting computational results on selected domains with different mesh size.
منابع مشابه
Robust All-quad Meshing of Domains with Connected Regions.
In this paper, we present a new algorithm for all-quad meshing of non-convex domains, with connected regions. Our method starts with a strongly balanced quadtree. In contrast to snapping the grid points onto the geometric boundaries, we move points a slight distance away from the common boundaries. Then we intersect the moved grid with the geometry. This allows us to avoid creating any flat qua...
متن کاملTighter Lifting-Free Convex Relaxations for Quadratic Matching Problems
In this work we study convex relaxations of quadratic optimisation problems over permutation matrices. While existing semidefinite programming approaches can achieve remarkably tight relaxations, they have the strong disadvantage that they lift the original n×n-dimensional variable to an n2×n2-dimensional variable, which limits their practical applicability. In contrast, here we present a lifti...
متن کاملNew Optimal Observer Design Based on State Prediction for a Class of Non-linear Systems Through Approximation
This paper deals with the optimal state observer of non-linear systems based on a new strategy. Despite the development of state prediction in linear systems, state prediction for non-linear systems is still challenging. In this paper, to obtain a future estimation of the system states, initially Taylor series expansion of states in their receding horizons was achieved to any specified order an...
متن کاملSIZE AND GEOMETRY OPTIMIZATION OF TRUSS STRUCTURES USING THE COMBINATION OF DNA COMPUTING ALGORITHM AND GENERALIZED CONVEX APPROXIMATION METHOD
In recent years, the optimization of truss structures has been considered due to their several applications and their simple structure and rapid analysis. DNA computing algorithm is a non-gradient-based method derived from numerical modeling of DNA-based computing performance by new computers with DNA memory known as molecular computers. DNA computing algorithm works based on collective intelli...
متن کاملAsymptotic Close to Optimal Resource Allocation in Centralized Multi-band Wireless Networks
This paper concerns sub-channel allocation in multi-user wireless networks with a view to increasing the network throughput. It is assumed there are some sub-channels to be equally divided among active links, such that the total sum rate increases, where it is assumed each link is subject to a maximum transmit power constraint. This problem is found to be a non-convex optimization problem and i...
متن کامل